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Two-Dimensional Potts Model and Annular Partitions
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Using the random cluster expansion, correlations of the Potts model on a graph
can be expressed as sums over partitions of the vertices where the spins are
fixed. For a planar graph, only certain partitions can occur in these sums. For
example, when all fixed spins lie on the boundary of one face, only noncrossing
partitions contribute. In this paper we examine the partitions which occur when
fixed spins lie on the boundaries of two disjoint faces. We call these the annular
partitions, and we establish some of their basic properties. In particular we
demonstrate a partial duality for these partitions, and show some implications
for correlations of the Potts model.
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1. INTRODUCTION

This paper explores the relation between the 2D Potts model and some
classes of partitions. We will assume some familiarity with the Potts model
(for a general review see ref. 1), whereas most of our discussion of parti-
tions will be self-contained (see ref. 2 for a good introduction).

Recall that a partition of a set is a collection of disjoint subsets, called
blocks, whose union is the entire set. To see how partitions arise for the
Potts model on a graph, let U be some subset of vertices of the graph. The
random cluster expansion(3) of the partition function generates a sum over
spanning subgraphs, each with many connected components. For any such
subgraph, we say that two of the vertices in U are in the same block if and
only if they belong to the same connected component. Then each subgraph
generates a partition of U. So the random cluster expansion can be rewritten
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as a sum over partitions of U, followed by a sum over all spanning subgraphs
which induce that partition on U.

This observation acquires some significance when one considers
correlations of the Potts model, with spins being fixed on U. The values of
the fixed spins also define a partition Y on U, where two vertices are in the
same block of Y if and only if they have the same fixed spin value. Then
the only terms which contribute in the random cluster expansion are those
whose partition of U is a refinement of Y (see Section 2.2 for the definition
of refinement).

Furthermore, when G is a connected planar graph, there are strong
restrictions imposed by the graph topology. The most well-known case is
where the fixed spins all reside on the boundary of one face, and in this
case only noncrossing partitions can occur.(4) Recall that a partition of
points on the boundary of a disk is noncrossing (NC) if the points can be
connected by arcs through the interior of the disk, in such a way that (a)
each block is path-connected along the arcs, and (b) arcs of different blocks
do not intersect. The NC partitions of [1, 2,..., n] form a partially ordered
set (poset), and this poset has been extensively studied in combinatorics.(5�9)

It is not hard to see that only NC partitions contribute when G is planar;
indeed, the random cluster expansion provides the connecting arcs for each
block (fattened out into subgraphs now). So the random cluster expansion
for this model can be re-written as a sum over NC partitions of the vertices
with fixed spins. This fact has been exploited in both numerical and analyt-
ical studies of the 2D Potts model.(4, 10�12)

Recently Reiner introduced an extended notion of NC partitions, (13)

using as motivation the identification of partitions of [1, 2,..., n] with the
intersection lattice for hyperplane arrangements corresponding to the root
system of type An&1 . In keeping with his notation we will write NCA(n) for
the noncrossing partitions of [1, 2,..., n]. Other root systems produce inter-
section lattices which can also be identified with classes of partitions, and
Reiner uses a graphical representation of these partitions to define his
extended notion of NC partition for a root system.

In this paper we show how consideration of the 2D Potts model leads
naturally to another interesting extension of NC partitions, which we call
the annular partitions. These are found by applying the random cluster
expansion to correlations on a planar graph where spins are fixed on the
boundaries of two disjoint faces. In essence, we fix points on the two
boundary components of an annulus, and then consider all the partitions
whose blocks can be connected by arcs through the interior of the annulus,
in such a way that arcs of different blocks do not intersect. To be specific,
suppose there are n points on one boundary component and m points on
the other. Then we will write NCA

2 (n, m) for the class of annular partitions
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of this set of n+m points. Note that NCA
2 (n, m) and NCA

2 (m, n) are
naturally isomorphic. Also we will demonstrate the inclusion

NCA(n)_NCA(m)/NCA
2 (n, m) (1)

Since the annulus can be viewed as a cylinder, annular partitions also
occur in the random cluster expansion of the Potts model on the cylinder,
where spins are fixed at both ends.

In the succeeding sections we will classify the annular partitions, and
show how they can be constructed using NC partitions on each boundary
component. We also derive a duality relation, analogous to the well-known
self-duality of NC partitions, (8, 4) and use it to derive some duality relations
for the Potts model correlations.

The paper is organized as follows: in Section 2 we review partitions
and their relation to correlations of the Potts model. In Section 3 we show
how NC partitions arise for correlations of spins fixed on the boundary of
one face, and review the duality relations in this case. In Section 4 we
define annular partitions, and relate them to correlations with spins fixed
on two boundary components. We also derive some new duality relations
for these correlations, and in Section 5 we work out one example in detail.
The appendix contains details on some constructions for annular parti-
tions.

2. THE POTTS MODEL AND PARTITIONS

2.1. Review of Potts Model

The partition function for the q-state Potts model on a graph G is

Z(G; K, g)=:
_

`
(ij)

exp[(K$(_(i)&_( j))] (2)

where K is a coupling parameter and $ is the Kronecker delta. Here _ is
an assignment of spins on the vertices of G, and [(ij)] are edges of G.

Let U be a subset of n vertices in G, and let x=(x1 ,..., xn) be an
assignment of spin values to the vertices in U. Then the correlation func-
tion with fixed spin values x in U is

� `
i # U

$(_(i)&x i )�=Z&1Zx(G; K, q) (3)
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where the partial partition function is defined by

Zx(G; K, q)= :
_ : _(U )=x

`
(ij)

exp[K$(_(i)&_( j))] (4)

and we have written [_(U )=x] to mean [_(i)=xi ] for all i # U. From
here on we shall focus our attention on this partial partition function
rather than on the corresponding correlation function, noting that (3)
provides the mapping between them.

2.2. Partitions

Next we recall some basic facts about partitions. Let A be a set with
N elements. A partition of A is a collection of disjoint subsets of A, called
blocks, such that every point in A belongs to exactly one block. A partition
X is called a refinement of the partition Y, if every block of X is a subset
of a block of Y. In this case we write X�Y. This defines a partial order
on the partitions of A, and the resulting partially ordered set (poset) is
denoted P. Suppose that f, g are functions on P, such that for every Y # P

f (Y )= :
X�Y

g(X ) (5)

Then it follows that for every Y # P we have

g(Y )= :
X�Y

+(X, Y ) f (X ) (6)

where +(X, Y ) is the Mo� bius inversion function.(2) The value of +(X, Y ) is
known; suppose that Y has k blocks B1 ,..., Bk , and that Bi contains ni

blocks of X, for i=1,..., k. Then the Mo� bius function is given by the
formula

+(X, Y )= `
k

i=1

(&1)ni&1 (ni&1)! (7)

2.3. Rooted Graph

Following the notation of ref. 4, we will refer to the pair (G, U ) as a
rooted graph. There are qn possible assignments x for spins in U. Each
assignment defines a partition of U, wherein vertices i, j belong to the same
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block if and only if they are assigned the same spin value. The partial parti-
tion function depends only on this partition (this is a special feature of the
Potts model). Accordingly for any partition X of U we define

ZX=Zx(G; K, q) (8)

where x is any spin assignment that produces the partition X. We assume
henceforth that q�n so that all partitions of U can be realised by spin
assignments.

2.4. Random Cluster Expansion

The random cluster representation of the Potts model partition func-
tion is obtained by expanding the interaction term in (2). For each edge
(ij) we write

exp [K$(_(i)&_( j))]=1+(eK&1) $(_(i)&_( j)) (9)

and then multiply out the resulting terms over all the edges. This expansion
produces a sum over sets of edges in the graph, and each edge set defines
a spanning graph of G. Summing over spins enforces the condition that the
spins in each connected component of a spanning graph have the same
value. We obtain

Z(G; K, q)= :
S/E

(eK&1) |S | q p(S) (10)

where E is the set of edges on G, |S | denotes the number of edges in the
set S, and p(S) is the number of connected components in the spanning
graph of S.

We can apply the same expansion to the partial partition function (4).
Now each set S appearing in the sum defines a partition of U, which we
write ?(S), by the rule that two vertices are in the same block if and only
if they belong to the same connected component of the spanning graph
defined by S. Since any set S that appears in the sum from the random
cluster expansion of ZX cannot connect sites in U with different spin
assignments, each such set S must induce on U a partition ?(S) which is
a refinement of X. In the language of partially ordered sets, we must have
?(S)�X. Therefore we get:

ZX= :
S/E : ?(S)�X

(eK&1) |S | q p(S)&|?(S)| (11)
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where |X | denotes the number of blocks in a partition X, and ?(S) is the
partition of U induced by S.

It is useful to isolate the terms in (11) which produce a given partition
of U. So for any b, c and partition X we define

RX (G; b, c)= :
S/E : ?(S)=X

b |S |c p(S) (12)

Then we have the identity

ZX= :
Y�X

q&|Y |RY (G; eK&1, q) (13)

Using (6) and (7) this yields

RX (G; eK&1, q)=q |X | :
Y�X

+(Y, X ) ZY (14)

3. NONCROSSING PARTITIONS

3.1. Definition

As described before, the noncrossing (NC) partitions of [1, 2,..., n] are
found by placing the n points in order on the boundary of a disk, and con-
necting points by arcs across the interior of the disk. A partition is NC if
the resulting path-connected components are disjoint. More formally, let U
be the set of n distinct points on the unit circle. Note that any two points
(ui , uj ) in U divide the circle into two disjoint arcs. Let (uk , u l) be another
pair of points in U. Then either both uk and ul lie on the same arc defined
by (ui , uj ), or they lie on different arcs. If they lie on different arcs we say
that the pairs (ui , uj ) and (uk , ul) are crossing. A partition X is NC if there
are no crossing pairs (ui , uj ) and (uk , u l), where ui , uj are in one block and
uk , ul are in a different block. The number of such partitions is the n th
Catalan number Cn=1�(n+1)( 2n

n ).

3.2. Self-Duality of NCA(n)

One property of NCA(n) will be of importance later, namely the fact
that the poset is selfdual.(8, 4) In order to describe the map which
implements self-duality, note that the set U has a natural dual set U* on
the circle��these are the n edges connecting adjacent points of U. We can
identify each edge with a point midway between two adjacent points of U,
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and then U* is also represented by a set of n points on the circle. Self-
duality of NCA(n) is the observation that every NC partition X of U
defines a unique NC partition X* of U*, which we call its dual partition
(note that there is no natural notion of dual for an arbitrary partition). The
dual partition is defined as follows: first note that any two points x, y in
U* divide the circle into two disjoint arcs, and hence they produce a parti-
tion of U containing exactly two blocks��namely the points of U on the
two arcs. Let P(x, y) be this two-block partition of U. Then x, y belong to
the same block of the dual partition X* if and only if X is a refinement of
P(x, y). Again there is a simple pictorial representation of this relation��we
connect all vertices in each block by arcs, so that arcs of different blocks
are disjoint. If x, y can be connected by an arc which does not cross any
of these arcs, then x, y are within the same block of X*.

3.3. Spins Fixed on One Face of Planar Graph

The paper(4) considers the case when G is a connected planar graph,
and U lies on the boundary of one face. In this case RX (G; b, c)=0 unless
X is a NC partition, since the allowed sets S are constrained by the topol-
ogy of the graph. It follows from (13) that the number of independent par-
tial partition functions [ZX] is at most the number of NC partitions, and
that if X is not NC, then ZX is a linear combination of the partial partition
functions of the NC partitions. These linear relations were derived in ref. 4,
and some concrete examples worked out.

3.4. Rooted Planar Graph and Its Dual

We now recall the construction of the dual rooted graph (G*, U*)
when G is planar, and U lies on one face boundary.(4) Suppose that U con-
tains n points, and lies on the boundary of a face f. We introduce one extra
vertex v inside f, and connect v to the vertices of U on the boundary of
f by inserting N additional non-overlapping edges inside f, call them
(e(1) ,..., e(N )). The resulting graph, call it GU , is planar and so has a dual
G(D)

U . Further every edge in GU has a unique dual edge in G (D)
U , and vice

versa.
We obtain the graph G* by removing from G (D)

U the edges which are
dual to (e(1) ,..., e(N )). Consequently the graph G* has N vertices inside the
face f, and these constitute the set U*. If we think of the boundary of f as
a circle, then the vertices of U are points on this circle. We can think of the
vertices of U* as also lying on this circle, placed in between consecutive
vertices of U. In other words, U* is the one-dimensional dual of U.
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3.5. Duality Relations for Spins Fixed on One Face

The mapping from (G, U ) to (G*, U*) also provides duality relations
for correlation functions.(4, 12) Consider the dual Potts model on the rooted
graph (G*, U*), whose coupling K* is related to K by

(eK&1)(eK*&1)=q (15)

Then the partial partition functions on (G, U ) and (G*, U*) are linearly
related. That is, for each partition X of U and each partition Y of U*, there
is a number J(X, Y ) depending on K, q and |U | such that

ZX=:
Y

J(X, Y ) Z*Y (16)

where Z*Y is the partial partition function on (G*, U*) with spins assigned
to U* so as to produce the partition Y. We will derive similar results in the
next section, for correlations with spins fixed on two boundary com-
ponents.

4. ANNULAR PARTITIONS

4.1. Definition

We now define the class NCA
2 (n, m). Let �A be the boundary of the

annulus

A=[(x, y) : 1�x2+ y2�2], (17)

where we choose orientation so that both components of the boundary
have positive orientation in the plane. Let U1 be a set of n distinct points
on one boundary component, labelled [1, 2,..., n] in order around the
circle, and let U2 be a set of m points on the other boundary component,
labeled [n+1, 2,..., n+m] in order. Let U=U1 _ U2 .

We say that X is a (n, m)-annular partition of [1, 2,..., n+m] if there
are arcs in A connecting vertices of U such that (a) each block of X is path
connected, and (b) arcs for different blocks do not intersect.

As special cases we note that NCA
2 (n, 0)=NCA(n), and NCA

2 (0, m)=
NCA(m). Also we may construct an annular partition by taking a disjoint
union of noncrossing partitions on the two circles, and hence (1) holds.
Next we describe how any annular partition can be built out of noncross-
ing partitions on each circle.
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4.2. Classification

Given an annular partition Y of U, we define a bridge to be any block
which contains vertices in both U1 and U2 . If Y contains k bridges then we
say that Y is a k-bridge partition. Let Y� be the zero-bridge partition
obtained from Y by splitting each bridge into two blocks, each containing
the vertices on one of the circles. Then if Y is a k-bridge, it follows that
|Y� |=|Y |+k (recall that |X | is the number of blocks in a partition X ).
Reversing the process, every k-bridge with k�1 can be obtained by start-
ing with a zero-bridge and joining together blocks on the two different
faces. However there are restrictions on which blocks can be joined from
the two faces. Namely it must be possible to draw arcs connecting all
vertices in each block, so that the arcs of different blocks do not intersect.
This means in particular that the blocks cannot be nested inside each other.
We give a precise definition of this construction in the appendix.

4.3. Partial Duality

There is also a notion of partial duality for annular partitions, which
we now explain. Each of the sets U1 and U2 has a one-dimensional dual,
namely U 1* and U2* respectively, constructed in the way described before.
We define U* to be the union of U1* and U 2* . We call our duality ``partial''
because it does not provide a 1�1 mapping between annular partitions of
U and U*.

If X is a k-bridge partition with k�2, then X also has a unique and
well-defined dual X*. The easiest way to see this is by drawing a picture��
see Fig. 1 for an example of a partition with k=2. The vertices in each

Fig. 1. Example of a two bridge partition X.
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Fig. 2. Same partition X, different edge set.

bridge are connected by arcs which cross the annulus between the two
boundary components. The remaining blocks on each boundary compo-
nent are connected by nonintersecting arcs. Together these define a parti-
tion of U*, by the rule that two vertices are in the same block if there is
an arc between them which does not cross any of these arcs. For k�2 this
partition does not depend on any choices made when drawing the arcs, see
for example Figs. 1, 2 and 3, so the dual X* is well defined. It is also
possible to turn this pictorial explanation into a formal definition of X*,
and for completeness we do this in the appendix.

Fig. 3. Dual partition X*.
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Fig. 4. Example of a one bridge partition Y.

Now suppose that X is a zero-bridge partition of U; then X is com-
posed of two NC partitions, one each for U1 and U2 . Each of these NC
partitions has a unique dual NC partition (constructed as in Section 3.2),
and together they form a zero-bridge partition of U*. So for a zero-bridge
partition we make this our definition of the dual partition X*.

However if k=1, that is if X is a one-bridge partition, the partition of
U* obtained by the above construction does depend on the choices made,
see for example Figs. 4 and 5. Hence there does not seem to be any useful
notion of dual partition for a one-bridge.

Fig. 5. Same partition Y, but different partition of U*.
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4.4. Random Cluster Expansion

As discussed earlier, the random cluster expansion of the Potts model
on (G, U ) produces a sum over annular partitions. Specifically every edge
set S defines an annular partition ?(S) of U, and in addition S provides the
connecting arcs which make each block path-connected.

4.5. The Dual Rooted Graph

Now we explain the construction of the dual rooted graph (G*, U*)
when U contains vertices lying on the boundaries of two disjoint faces in
G. It proceeds in parallel with the construction in Section 3.4. Without loss
of generality we take one of the faces to be unbounded. Let f1 and f2 be
the two faces, and suppose there are n and m vertices of U on the boun-
daries of f1 and f2 respectively. We introduce one extra vertex v1 inside f1 ,
and one extra vertex v2 inside f2 . We then connect v1 to the vertices of U
on the boundary of f1 by inserting n additional non-overlapping edges
inside f1 , call them (e(1, 1) ,..., e(1, n)). Similar edges are added inside f2 , call
them (e(2, 1) ,..., e(2, m)). The resulting graph GU is planar and so has a dual
G(D)

U . Further every edge in GU has a unique dual edge in G (D)
U , and vice

versa.
We obtain the graph G* by removing from G (D)

U the edges which are
dual to (e(1, 1) ,..., e(1, n)) and (e(2, 1) ,..., e(2, m)). The graph G* has n vertices
inside the face f1 and m vertices in the face f2 , and together these form the
set U*. The pair (G*, U*) is the dual rooted graph.

4.6. Duality Relations

Given an edge set S on G, we define the dual set S* on G* by the con-
dition that an edge is in S* if and only if its dual edge is not in S. As usual
we denote by ?(S) the annular partition of U induced by S. Similarly S*
defines an annular partition of U*, namely ?(S*).

If ?(S) is a k-bridge partition with k�2, then ?(S*) is also a k-bridge
partition, and it is precisely the dual partition defined in Section 4.3.
However if k=0 or k=1 then ?(S*) does not depend alone on ?(S). In
general it also depends on S. This is consistent with the fact that there is
no natural notion of duality for zero-bridge and one-bridge partitions. One
consequence of this is that there is no natural 1-1 mapping between partial
partition functions on (G, U ) and (G*, U*), as was the case when U
belonged to one face boundary.

In order to salvage the situation, we divide the zero-bridge and one-
bridge partitions into classes, as follows. For each zero-bridge partition X,
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let C(X ) be the set of annular partitions consisting of X together with all
one-bridge partitions which can be constructed from X by joining blocks
on the two faces. Now X itself has a dual X*, namely the zero-bridge parti-
tion formed by taking the planar duals of its two planar components. We
have the following result.

Lemma 1. Let X be a zero-bridge partition, and S an edge set.
Then ?(S) is in the class C(X ) if and only if ?(S*) is in the class C(X*).

Proof. If an edge set S contains a closed path that seperates the two
boundary components, then the dual edge set S* cannot connect the two
dual boundary components. Hence ?(S*) must be a zero-bridge in this
case. By examining the cases when both, only one of, or neither S and S*
contain such closed paths, the result can be deduced.

Recall that for any partition X we defined RX in (12) using the sum
over all edge sets S such that ?(S)=X. Now in addition we define /(S) to
be zero if ?(S) is a zero-bridge partition, and equal to one otherwise. Then
there is a simple relation between the edge set S and its dual S*, as follows.

Lemma 2. For all b, c

b |S |c p(S)=b |E |c3&|F |&|?(S*)|&/(S*)(b&1c) |S*|c p(S*) (18)

Proof. First observe that

|S |+|S*|=|E | (19)

where |E | is the number of edges in G. Second,

p(S)= p(S*)+|?(S)|+|S*|+/(S)&|F |&N+1 (20)

where |F | is the number of faces in G, and N=|U |=n+m is the number
of roots. Third,

|?(S)|+|?(S*)|=N+2&/(S)&/(S*) (21)

4.7. Partial Duality for Partial Partition Functions

By combining Lemma 1 and Lemma 2, we get the following set of
relations. First, if X is a k-bridge partition with k�2 then

RX (G; b, c)=b |E |c2&|F |&|X*|RX*(G*; b&1c, c) (22)
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Second, if X is-a zero-bridge partition then

:
Y # C(X )

RY (G; b, c)=b |E |c3&|F |&|X*| :
W # C(X*)

RW (G*; b&1c, c) (23)

Using the Mo� bius inversion formula, both (22) and (23) provide
linear relations between the partial partition functions on G and G*. By
substituting (14) and the corresponding relation on G* into (22) and (23)
and taking b=eK&1, c=q we obtain the following linear duality relations
for partial partition functions, and hence for correlations. These are the
analogs of the duality relations found in ref. 4. In the next section we work
out the relations in full detail for one example.

Case 1. X is a k-bridge with k�2.

q |X | :
Y�X

+(Y, X ) ZY=(eK&1) |E | q2&|F | :
W�X*

+(W, X*) Z*W (24)

Case 2. X is a 0-bridge.

:
V # C(X )

q |V | :
Y�V

+(Y, V ) ZV

=(eK&1) |E | q3&|F |&|X*| :
R # C(X*)

q |R| :
W�R

+(W, R) Z*R (25)

Note that there are not enough relations to allow a complete solution
for ZX in terms of Z*Y . The number of relations depends on the numbers
of vertices of U on both faces. It is equal to the number of annular parti-
tions minus the number of one-bridges. This is strictly less than the number
of independent partial partition functions, and we conjecture that (24) and
(25) constitute a complete set of independent relations between the ZX

and Z*Y .
Note that the number of one-bridges can be calculated in terms of the

NC partitions. Let P1 and P2 be the sets of all NC partitions on the two
faces. Then the number of one-bridges is

\ :
X # P1

|X |+\ :
X # P2

|X |+ (26)

5. EXAMPLE OF DUALITY RELATIONS

We work out in full detail the duality relations (24) and (25) for a
special case, where there are four fixed spins in U, with two each on two
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Fig. 6. Example with two roots on each face.

disjoint faces. The setup is shown in Fig. 6, where the vertices in U are
labeled [1, 2, 3, 4] (without loss of generality we have chosen one of the
faces as the infinite face of the graph). The vertices in U* are labeled
[5, 6, 7, 8], as shown in Fig. 7.

There are 15 possible partitions of U, and all of them are annular par-
titions. There are four 0-bridge partitions, nine 1-bridge partitions and two
2-bridge partitions��they are listed in Table I. For example the partition
(12)(3)(4) has three blocks, and one of these (12) is a bridge.

Fig. 7. Dual of previous example.
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Table I. List of All Annular Partitions for Rooted Graphs
(G, U) and (G*, U*) in Figs. 6 and 7

Number of bridges Partitions of U Partitions of U*

0 (1)(2)(3)(4) (5)(6)(7)(8)
(14)(2)(3) (58)(6)(7)
(1)(23)(4) (5)(67)(8)
(14)(23) (58)(67)

1 (12)(3)(4) (56)(7)(8)
(13)(2)(4) (57)(6)(8)
(1)(24)(3) (5)(68)(7)
(1)(2)(34) (5)(6)(78)
(123)(4) (567)(8)
(124)(3) (568)(7)
(134)(2) (578)(6)
(234)(1) (678)(5)
(1234) (5678)

2 (12)(34) (56)(78)
(13)(24) (57)(68)

Hence there are six duality relations between RX (G) and RY (G*), and
we list them below. They imply six relations between ZX and Z*Y which we
also list.

Relations for R. The relations hold for general arguments b, c of the
functions RX . We define

*=b |E |c&|F | (27)

Let ,: U � U* be the map 1 � 5, 2 � 6, 3 � 7 and 4 � 8. To keep the nota-
tion as compact as possible, we will use a partition X of U to also denote
the corresponding partition ,(X ) of U*. Then we will write TX=
*&1�2RX (G; b, c) and also T*X=*1�2R,(X )(G*; b&1c, c) so for example
T*(12)(3)(4)=*1�2R(56)(7)(8)(G*; b&1c, c).

We list four relations below between the TX and the T*Y . The other two
relations are obtained by exchanging T and T* in the first two relations.

T(1)(2)(3)(4)+T(12)(3)(4)+T(13)(24)+T(1)(3)(24)+T(1)(2)(34)

=c[T*(14)(23)+T*(1234)] (28)

T(14)(2)(3)+T(124)(3)+T(134)(2)=T*(1)(4)(23)+T*(123)(4)+T*(1)(234) (29)

T(12)(34)=T*(12)(34) (30)

T(13)(24)=T*(13)(24) (31)
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Relations for Z. We set c=q and b=eK&1, and define for any par-
tition X of U

WX= :
Y�X

q&|Y |TY

W*X= :
Y�X

q&|Y |T*Y

Then ZX=*1�2WX and Z*,(X )=*&1�2W*X , where now *=(eK&1) |E | q&|F |.
Again we list four relations��the other two are obtained by exchanging

WX and W*X in the first two relations.

W(12)(3)(4)+W(13)(2)(4)+W(1)(3)(24)+W(1)(2)(34)&3W(1)(2)(3)(4)

=q[W*(1234)&W*(123)(4)&W*(124)(3)&W*(134)(2)&W*(234)(1)&W*(12)(34)

&W*(13)(24)+2W*(12)(3)(4)+2W*(13)(2)(4)+W*(14)(2)(3)+W*(1)(4)(23)

+2W*(24)(1)(3)+2W*(1)(2)(34)&5W*(1)(2)(3)(4)] (32)

W(124)(3)+W (134)(2)&W(12)(3)(4)&W(24)(1)(3)&W(13)(2)(4)

&W(14)(2)(3)&W(34)(1)(2)+3W(1)(2)(3)(4)

=W*(123)(4)+W*(1)(234)&W*(12)(3)(4)&W*(13)(2)(4)&W*(1)(2)(34)

&W*(1)(3)(24)&W*(1)(4)(23)+3W*(1)(2)(3)(4) (33)

W(12)(34)&W (12)(3)(4)&W(1)(2)(34)+W(1)(2)(3)(4)

=W*(12)(34)&W*(12)(3)(4)&W*(1)(2)(34)+W(1)(2)(3)(4) (34)

W(13)(24)&W (13)(2)(4)&W(1)(3)(24)+W(1)(2)(3)(4)

=W*(13)(24)&W*(13)(2)(4)&W*(1)(3)(24)+W*(1)(2)(3)(4) (35)

APPENDIX. ANNULAR PARTITIONS AND THEIR DUALS

Making k-Bridges

First we describe how all annular partitions are constructed from zero-
bridge partitions. As usual, U contains n+m points on two circles forming
the boundary of an annulus. Given two points x, y on one of these circles,
let A1(x, y) and A2(x, y) be the two arcs of the circle between x and y. Let
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B=[B1 ,..., Bk] be a collection of disjoint subsets of U lying on this circle
(since it need not include all vertices, it is in general not a partition). Each
set Bi divides the boundary into |Bi | disjoint arcs, call them [Si , a],
a=1,..., |Bi |. We say that B is a k-chain if for each set Bi , there is one arc
Si, a which contains all other sets Bj in B. In this case we call Si, a the
exterior arc of Bi . Note that if k=1 then B is always a 1-chain, but the
exterior arc is not defined.

Now suppose that X is a zero-bridge partition, and suppose also that
it contains a k-chain on both circles. Then we can form a k-bridge annular
partition by joining the blocks in the k-chains together. There are exactly
k different k-bridges that can be formed from this pair of k-chains, and
each is specified uniquely by giving the component blocks of any one
bridge. This gives a complete characterization of annular partitions.

Making the Dual

Next we give a formal definition of the dual of a k-bridge partition X
when k�2. To do this we have to give a condition which determines
whether two dual points x, y in U* lie in the same block of X*. First sup-
pose that the dual points x, y lie on the same boundary circle. Let P(x, y)
be the two-block partition of points on that boundary defined by x, y.
Recall that X� is obtained from X by splitting each bridge into two blocks,
one for each boundary component. Let X1 be the restriction of X to the
boundary component containing x, y. Then x, y are in the same block of
X* if and only if X1 is a refinement of P(x, y), and all blocks of X1 which
come from bridges of X lie in the same block of P(x, y).

Next recall that X is built using a k-chain on both circles. For k�2,
each block in a k-chain has an exterior arc which contains all other blocks
in the k-chain. Clearly these arcs overlap for every pair of blocks in the
k-chain. Let S1 and S2 be the intersections of these exterior arcs on both
circles. Then each S i is a union of k disjoint arcs. Each of these arcs has
endpoints belonging to different bridges in the k-chain. Say the arc s1 in S1

has endpoints on the bridges Bi and Bj . Then there is a unique arc s2 in
S2 whose endpoints also lie on Bi and Bj . In this case we call s1 and s2 the
matching arcs in S1 and S2 . This gives a 1-1 correspondence between S1

and S2 .
Now suppose that x, y lie on different face boundaries. Then x, y are

in the same block of X* if and only if (i) they lie on matching arcs s1 in
S1 and s2 in S2 , (ii) in s1 all blocks of X lie wholly in either A1(x) or A2(x),
and (iii) in s2 all blocks of X lie wholly in either A1( y) or A2( y).

Note that for k=1 this construction is not well defined since there is
no exterior arc.
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